Population structure and inbreeding from pedigree analysis of purebred dogs

Federico C. F. Calboli*, Jeff Sampson †, Neale Fretwell ‡ and David J. Balding*

* Department of Epidemiology and Public Health, Imperial College, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
† The Kennel Club, Clarges Street, London W1J 8AB, UK
‡ WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, LE14 4RS, UK
RUNNING HEAD: Analysis of pedigree population structure

KEYWORDS: Population structure; Dog; Pedigree; Inbreeding; Model organism

CORRESPONDING AUTHOR:
Federico C. F. Calboli,
Department of Epidemiology and Public Health
Imperial College, St. Mary’s Campus
Norfolk Place, London W2 1PG
United Kingdom
Tel +44 (0)20 75941602
Fax +44 (0)20 75943193
f.calboli@imperial.ac.uk
Abstract

Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world’s most extensive resources for canine population-genetics studies: the UK Kennel Club registration database. We chose ten representative breeds and analysed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the Greyhound, and estimate an inbreeding effective population size between 40 and 80 for all but two breeds. For all but three breeds, more than 90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Ψ for measuring population structure directly from the pedigree, and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare.

The domestic dog (Canis lupus familiaris) is important for many economic and social reasons, and has recently become increasingly prominent as a model species for human disease. Purebred dogs have been successfully used as models for human Mendelian disorders, such as narcolepsy (Boehmer et al., 2004; Lin et al., 1999) and hereditary kidney cancer (Nickerson et al., 2002; Comstock et al., 2004). Advantages of dogs as models for human disease include substantial genomic homology with humans: although dogs are further from humans than mice on a phylogenetic tree, they are nevertheless genomically more similar because of their larger generation time. Dogs in population studies are often exposed to similar environments to those of their human owners and, like humans, they can be studied using population case-control designs, without the expense and ethical concerns raised by keeping study animals in laboratories. Many diseases affecting dogs have high prevalence in one or a few breeds, such as Addison’s
disease, common in Portuguese Water Dogs (CHASE et al., 2006), interstitial lung disease in West Highland White terriers (NORRIS et al., 2005), and dermoid sinus in Ridgeback dogs (SALMON HILLBERTZ et al., 2007). This raises the hope that causal variants that are rare overall may be concentrated in specific breeds, and thus easier to map than the corresponding human variant. For these reasons, dogs have been proposed as a model for a number of complex human diseases, such as autoinflammatory diseases (PUPPO et al., 2006), cancer (KHANNA et al., 2006), and retinitis pigmentosa (GUYON et al., 2007).

Following the canine genome sequence (LINDBLAD-TOH et al., 2005), two Single Nucleotide Polymorphism (SNP) chips have recently been commercially released, each representing a set of about 26K SNPs chosen for accuracy and uniform genome coverage (LINDBLAD-TOH, 2007). The first genome-wide population association study in dogs has now emerged (KARLSSON et al., 2007) and many more are expected.

Population structure is an important factor in genetic association studies, and can lead to spurious associations (CARDON and PALMER, 2003; MARCHINI et al., 2004; CLAYTON et al., 2005). Although methods are now available to diagnose and correct for population stratification from genome-wide marker data, it is desirable for researchers to be aware of potential stratification before embarking on such studies. The breed structure of dogs is well recognised, but the extent to which there might be additional population structure within dog breeds has not been extensively investigated. The breeding programmes implemented by dog breeders, including use of “popular” sires, could lead to cryptic population structure. In many species, population structure is studied at a geographic level: for example, allele frequencies are compared in different lakes or valleys, regions or nations. Dog breeding patterns, however, can be driven by stud value assessed by behaviour when shown and conformance to breed standards. Because of such factors, together with artificial insemination and international dog shows, geography may be less relevant for purebred dogs than for other species.

Population structure is a property of the underlying pedigree, whether observed or not and whether or not it is aligned with geographical units. We develop novel approaches
for investigating population structure directly, without genotyping. Some studies of canine pedigrees have appeared (Cole et al., 2004; Leroy et al., 2006), but we propose a more extensive study both in terms of pedigree size and analyses adopted, particularly the novel analyses of population structure. We use pedigrees from the UK Kennel Club (KC), the oldest dog fanciers club in the world. Since its foundation in 1873, the KC has compiled a dog registration database, which has become the most comprehensive record of UK dog breeds and among the largest canine pedigree records internationally. Registration records are available in electronic form since about 1970, and we analyse these for a selection of ten breeds, to assess levels of inbreeding and population structure. Since this database has not been described elsewhere in the scientific literature, we also analyse demographic parameters such as offspring counts and generational imbalance between mates, and compare these across breeds.

Methods

Data

The electronically-recorded part of the KC database includes 5.7M dogs from 207 breeds registered up to the end of 2006, with a median of 3,443 dogs per breed. We chose ten breeds for analysis (Table 1), including at least two representatives of the four main breed groups identified from genetic analysis (Parker et al., 2004; Parker and Ostrander, 2005). We also sought to include the most popular breeds in the UK and major breeds that originated in the UK. Greyhounds are a special case, because the KC database does not include most Greyhounds bred for racing. The Akita Inu is also special in that the breed was introduced into the UK since the advent of electronic records, and so the pedigree analysed here spans the entire history of the breed in the UK.

The database records for each dog its registration number, the registration number of both parents, date of birth, the number of littermates born and the number subsequently registered, and the coat colour. Only the registration numbers of dog and
parents are used in the present analyses. Four dogs, all Labrador Retrievers, were recorded both as a sire and a dam and have been eliminated from our analyses. Individuals with both sire and dam missing are assumed to be founders, but 0.05% of dogs have exactly only one parent recorded, which unequivocally indicates missing data. This proportion is highest in the Chow Chow and the Collie (0.13% in each case).

Generation number

The generation number (GN) of an individual has been defined (Thompson, 1986) as one plus the maximum GN of its parents, with founders assigned GN = 0. However, because dog pedigrees have many overlapping generations, we prefer to follow (Brinks et al., 1962) and define the GN of the ith non-founder in each breed to be

$$GN_i = 1 + \frac{GN_{s(i)} + GN_{d(i)}}{2}$$

where $s(i)$ and $d(i)$ denote the sire and dam of i. Thus, when parental GN values differ by more than two, which holds for over 5% of matings in our pedigrees, the offspring GN will be less than the GN of one of the parents. We round GN to integer values where convenient. If only one parent is missing, that parent is assumed to have GN = 0.

Inbreeding and diversity

The inbreeding coefficient f_i for the ith dog is the probability that its two alleles at a locus descend from the same ancestral allele within the pedigree. It also equals (Cannings and Thomas, 2007) the kinship coefficient of $s(i)$ and $d(i)$. The value of f_i depends on the available pedigree: common ancestors of $s(i)$ and $d(i)$ not recorded in the pedigree do not contribute to f_i. In effect, all founders are assumed to have $f = 0$, which is unrealistic because the history of most breeds extends beyond the founders in the KC database. The dependence of f_i on the available pedigree is undesirable in general, for example because different dogs may have the same underlying level of inbreeding but have different f-values because of different numbers of ancestors recorded in the
pedigree. However, this problem is minimal for the KC pedigrees studied here, which have little missing data and are of relatively uniform depth. To minimise the effect of pedigree time-depth, we report average \(f \) values only for dogs in generations 6 and 7. We used “Meuw” in the Pedig package (Boichard, 2002) to calculate \(f_i \), which implements the algorithm of Meuwissen and Luo (1992), based on the formula of Wright (1922):

\[
f_i = \sum \frac{1 + f_j}{2^{n+m+1}}
\]

where the sum is over all inbreeding loops in the pedigree of \(i \). An inbreeding loop consists of a pair of non-overlapping ancestral lineages from \(s(i) \) and \(d(i) \), respectively, up to a common ancestor \(j \), and \(n \) and \(m \) are the numbers of meioses in the lineages from \(s(i) \) and \(d(i) \) to \(j \).

In a random mating population of \(N/2 \) male and \(N/2 \) female breeding adults, the average inbreeding coefficient is expected to increase by about \(1/N \) in each generation after the first. We use this relationship, together with the average increase in \(f \) per generation up to generation 5, to compute an inbreeding effective population size (\(N_e \)) for each breed.

We compare the average inbreeding coefficient \(f \) with the kinship coefficient, also computed using Pedig (Boichard, 2002), averaged over all pairs of individuals in the final two generations represented in each breed. Under random mating, average kinship and average \(f \) are similar. Any discrepancy between the two reflects a difference between the relatedness of mate pairs from that expected under random mating, and hence provides a measure of the tendency to consanguinous matings within a breed.

The genetic diversity among founders that is retained over the time depth of the pedigree is also reported, which is equivalent to the ratio of effective to actual numbers of founders (Lacy, 1989). Specifically, we estimate from simulations the probability that an allele chosen at random from a founder would be represented by a copy in generation 6. We found through simulations that for a random-mating population with a large, constant size, this probability is close to 25%. A low proportion of genetic diversity is retained under strong inbreeding or when reproductive success is highly
variable across individuals.

Population structure

Informally, population structure corresponds to disjoint sets of ancestors having less overlap in their corresponding sets of descendants than would be expected under panmixia. The most extreme case would arise if there exist sets of ancestors having no descendants in common: this would correspond to completely isolated sub-breeds.

Below, we use “descendant” to mean an individual having no recorded offspring and whose GN value is within two of the maximum GN for the breed. In addition, we consider only one member of any (full) sibship. We use “ancestor” to mean a founder with at least one descendant.

The ancestor-descendant relationships within a breed can be represented by a bipartite graph, with sets of nodes A and D corresponding to ancestors and descendants, and arcs from A to D representing their relationships. Population structure corresponds to subsets $A' \subset A$ and $D' \subset D$ such that there are many arcs from A' to D', and few arcs from A' to $D' \setminus D'$ and from $A \setminus A'$ to D', where “many” and “few” are relative to expectations under random mating. Methods for identifying “community structure”, that is tightly-linked components of general graphs that are partly isolated from the rest of the graph, have been reported in the study of social networks (Girvan and Newman, 2002, 2004). These methods are not appropriate for the special features of pedigree analysis, in particular the need to assess relatively weak population structure, and we explore here some novel approaches.

First we considered some graphical methods of identifying within-breed population structure. We applied principal components analysis based the ancestor/descendant incidence matrix that has 1 in row i and column j if j is an ancestor of descendant i, and 0 otherwise. Thus, the descendants are treated as individuals and the ancestors as binary variates. Informally, the first few principal components correspond to sets of ancestors such that descendants tend to have either many or few ancestors in each set.

We also applied multidimensional scaling, which is a related technique that tries to find
the best representation of distances between all pairs of descendants; we used one minus the kinship coefficient to measure the “distance” between two individuals. Both these techniques lead to plots that can be inspected visually for apparent population structure. To obtain a quantitative measure of population structure, we applied K-means clustering to identify $K = 2$ clusters of descendants having maximal common ancestry. We used the \texttt{kmeans} algorithm in \texttt{R} (\texttt{R Development Core Team}, 2007). For each cluster, the mean value for ancestor j is the proportion of descendants in the cluster having j as an ancestor. Strong population structuring corresponds to widely separated mean values in different clusters, so that each cluster has a very different pattern of ancestry.

In order to quantify the level of clustering, after the K-means algorithm converged, we assumed that the vector of counts of descendants of ancestor j in each cluster has the beta-binomial distribution with parameters N_j, λp, and $\lambda(1-p)$, where N_j denotes the total number of descendants of j, and p is the proportion of all descendants that are in the first cluster. This distribution has

$$\text{mean} = N_j p \quad \text{variance} = \frac{\lambda + N_j}{\lambda + 1} N_j p (1-p).$$

The beta-binomial reduces to the binomial in the special case $\lambda = \infty$, which corresponds to the descendants of j being allocated independently to clusters, with probability proportional to cluster size. Finite values of λ correspond to a positive correlation in the cluster memberships of different descendants. Thus, λ measures the effect of population structure, and is the focus of our interest. We estimate λ via maximum likelihood (Balding 2003), treating the cluster memberships of descendants of different ancestors as independent. Because mates can have many descendants in common, we performed analyses separately for male and female ancestors. However, the independence assumption may still not be strictly valid, so that the 95% credible intervals reported below, based on a uniform prior, should be regarded as approximate.

By implementing the transformation

$$\Psi = \frac{1}{1 + \lambda}$$
we obtain a value between zero and one that we call the “Pedigree Structure Index”. Ψ is analogous to F_{st}, the classical measure of population differentiation (Excoffier, 2007). The value $Ψ = 1$ means that different clusters of descendants have no ancestors in common, while $Ψ \approx 0$ indicates that the overlap in the ancestors of different clusters could have arisen from a random assignment of ancestors to descendants. Since the K-means clustering algorithm can by chance identify some apparent clustering, even in the absence of population structure, we very rarely obtain $Ψ = 0$. To investigate this effect, we randomly permuted the columns of the ancestor/descendant incidence matrix for the smallest and largest breeds (Greyhound and Labrador Retriever), each 1,000 times, and estimated $Ψ$ for each resulting dataset. Thus, $Ψ$ should be small, but it will be non-zero because the K-means algorithm may identify some apparent clustering. We also tested our algorithm by applying it to two distinct breeds analysed as if a single breed.

Results

Pedigree size and complexity

A total of 2.1M dogs were studied in ten breeds (Table 1), ranging in size from the Greyhound (\sim1K) to the Labrador Retriever (\sim700K). The maximum GN value ranged from 5.9 in Greyhounds up to 9.0 in the German Shepherd, with an average over the ten breeds of 8.0. A measure of the complexity of pedigrees is given by the number of cross-generation matings, and the magnitude of the generational differences. In 19% of Akita Inu matings, and 16% of Bulldog matings, the GN of the mates differs by two or more, and in 7% of matings in both breeds the GN difference between mates was ≥ 3. The lowest rate of GN imbalance among mates was in the Golden Retriever, with 4% of mates having GN differing by ≥ 2. In every breed, the GN of the dam on average exceeds that of the sire (i.e. the dam tends to be younger), but there were also many instances of the sire having a larger GN than the dam. The greatest mean difference in the GN of mates is just over 0.5, in the Akita Inu.
Offspring distribution

Around 20% of dogs have a recorded offspring (Table 2). Popular sires (defined here as > 100 recorded offspring) are evident in all breeds except Greyhound. Golden Retrievers have the largest proportion of popular sires (10%), and conversely the lowest proportion (5%) of male dogs that are sires (Table 1). Other than the Greyhound, the Akita Inu has the most even distribution of reproductive success: the lowest proportion of popular sires (1%) and the highest proportion (13%) of male dogs that are sires. Highly-prolific dams (> 40 offspring) are concentrated in three breeds: German Shepherd, Golden Retriever and Labrador Retriever. Most dams have just one litter recorded.

Inbreeding and diversity

Figure 1 shows average values of the pedigree inbreeding coefficient f over generations. As GN increases, there are additional generations of ancestors recorded and so f tends to increase. All breeds show a roughly constant increase over generations, indicating little change in mating patterns, except for the final generation which may be atypical because most eventual members of this generation are not yet recorded.

Greyhounds have a high average value of f up to generation 5, but there are no highly-inbred Greyhounds (Table 3). Further, the average kinship is also high, so that the high average f can be largely attributed to small population size rather than a practice of consanguinous matings. Since there are only 16 Greyhounds in generations 6 and 7, we will ignore them in the following discussion.

Every other breed includes some highly-inbred dogs, the most inbred being four Boxers each with $f = 0.5$ (Figure 2). Bulldogs have an extremely high mean f in generation 9 (Figure 1), but most breeds do not have a ninth generation for comparison. When averaged over generations 6 and 7 (Table 3), f is highest in Collies, with almost 30% of Collies in these generations being highly inbred ($f > 0.1$). Mean kinship among Collies is not elevated, at 0.020, and so the high level of inbreeding appears to represent a pattern of consanguinous matings in the Collie. In contrast, the Akita Inu have a higher mean kinship at 0.023, reflecting their small population size, yet this breed has relatively
low values of f, which could reflect a pattern of inbreeding avoidance by Akita breeders. There is overall a negative correlation between average f and breed size: the four lowest average f values all occur in large breeds. The largest breed, Labrador Retriever, has the lowest average f as well as the lowest mean kinship. The Boxer is an outlier, being one of the larger breeds but with average f close to 5%, and 16% of Boxers have $f > 0.1$. The inbreeding effective population sizes (N_e) range from 17 up to 114 (Table 3). They are thus relatively uniform across breeds, and much smaller than, though strongly correlated with, census sizes (Table 1). Akita Inu and Chow Chow have a higher N_e than would be predicted from census size, whereas Collies have a relatively small N_e. The Akita Inu has the same N_e as the Boxer, a much larger breed. The Akita Inu preserves 30% of the founders’ unique genetic variants up to generation 6, more than expected under random mating (25%). The Boxer and the Bulldog also score highly on this index, which is surprising in view of the high average f in both breeds. In the case of the Bulldog, this may be attributed to having the highest proportion of bitches that are dams (36%). It is striking that seven breeds retain < 10% of genetic variants up to generation 6, indicating a severe effect of breeding patterns on total genetic variation.

Population Structure

Principal component and multidimensional scaling plots show strong signs of systematic structure in the Springer Spaniel, and to a lesser extent in the Golden Retriever and Chow Chow (Figure 3). In the Spaniels, there appears to be a subpopulation engaging in a distinct breeding pattern leading to linear structure in both plots, and this corresponds to the minority cluster identified by 2-means clustering. This cluster of dogs has in total 266 ancestors among the Springer Spaniel founders, 175 (66%) of which have descendants only among dogs in this line, which thus appears to represent a subpopulation of Springer Spaniels with a distinct pattern of ancestry. Moreover, the mean kinship of dogs in the line is 0.034, double the mean kinship over the whole breed. Our novel measure of population structure, Ψ, revealed in each of the ten breeds a
moderate to strong level of clustering of current generation dogs according to their founder ancestors, both sires and dams (Table 4). The estimate of Ψ ranged between 0.10 in Akita Inu, to 0.55 in Springer Spaniel, in both cases obtained when analysing ancestral sires. For comparison, F_{st} among three widely separated human populations investigated in the International Hap Map project was estimated at 0.12. Our clustering step can exaggerate the apparent population structure relative to a situation in which subpopulations are defined *a priori*, for example by geography. However, from randomised datasets (Table 5), we found that the Ψ values are concentrated near 1% for the large breed, and range up to around 8% for the small breed, which indicates that Ψ is significantly different from zero in every breed, and suggests that the inflation in its estimated value due to the effect of our clustering is modest. When applying the algorithm to two distinct breeds analysed as if a single breed, the clustering algorithm correctly partitioned all the dogs into the two breeds, with no ancestors in common, and hence Ψ = 1.

Inspection of the clustering results for Springer Spaniels reveals further information about the Springer Spaniel subpopulation evident from Figure 3. Among Springer ancestral sires, 8% have overall 86% of their descendants in the minority cluster, whereas the remaining 92% of ancestral sires have less than 2% of their descendants in this cluster. Another striking feature of the Springer Spaniel is that the strong structuring evident among ancestral sires is almost absent among ancestral dams: only two of our ten breeds give a smaller value of Ψ for ancestral dams. Thus, the current generation of Springer Spaniels shows a clear pattern of ancestral sires but not of ancestral dams. In other breeds, the value of Ψ is similar between ancestral sires and dams, except for the Labrador Retriever but in this case it is the dams that show greater population structure.

The Akita Inu, a relatively rare breed that has been imported into the UK starting from the 70s, shows Ψ = 0.10 and Ψ = 0.13 among sires and dams, in each case the lowest among the breeds studied. Chow Chow, another imported breed but which is longer-established in the UK, has Ψ = 0.43 and Ψ = 0.45, second highest and highest
values among sires and dams, respectively.

Discussion

Population structure corresponds to a pattern of preferential mating within a subgroup of the population. For many species it is natural to identify the subgroups with a geographical terrain, but this is less natural for purebred dog populations and in any case is not necessary: population structure is fundamentally a property of the pedigree, irrespective of geography. Directly studying population structure from a pedigree allows it to be measured without genotyping. Just as inbreeding can be studied either via excess homozygosity in genotype data or by pedigree analysis, so population structure can be studied in both ways, but to our knowledge there has been no systematic previous attempt to study population structure by analysing pedigrees. Thus, our Pedigree Structure Index Ψ appears to be the first proposal for a method to measure it. Using Ψ, and the pedigree-based inbreeding coefficient f, we found evidence of population structure and inbreeding in all breeds. The Springer Spaniel shows low levels of inbreeding but strong population structure, apparently due to systematic choice of sires in a subpopulation representing around 10% of the breed. Collies and Bulldogs show high levels of inbreeding, but population structure is low in the Bulldog and only modest in the Collie. The Akita Inu showed the least evidence of population structure and also a low level of inbreeding relative to its small size. Popular sires are evident in all breeds except the Greyhound, and are most common in the Golden Retriever. Those designing population-based gene mapping experiments in purebred dogs might wish to avoid breeds with high levels of population structure, such as the Springer Spaniel, if at all possible. When no realistic choice of breed is available, for example because the diseases is concentrated in one breed, pedigree analysis could help inform sampling strategy. Whatever breed is chosen, some account should be taken of the effects of within-breed population structure on the association analyses. Inbreeding, on the other hand, can be advantageous for gene mapping because it generates more minor allele homozygotes, which can assist power, particularly for recessive phenotypes. Thus,
the Bulldog, with its high level of inbreeding but low population structure, might make a suitable choice.

Dog breeds are required to conform to a breed standard, the pursuit of which often involves intensive inbreeding: the inbreeding effective population size of most breeds considered here is orders of magnitude smaller than the census size, and exceeds 100 only in the Labrador Retriever. This has adverse consequences in terms of loss of genetic variability and high prevalence of recessive genetic disorders. These features make purebred dogs attractive for the study of genetic disorders, but raise concerns about canine welfare.

Dog registration rules have only been rigidly enforced for about 50 years, prior to that occasional outcrossing was still possible. Anecdotal evidence suggests that loss of genetic variation and high levels of inbreeding have adverse consequences for canine health and fertility. We have found that the loss of genetic diversity is very high, with many breeds losing over 90% of singleton variants in just six generations. On the basis of these results, we concur with Leroy et al. (2006) that remedial action to maintain or increase genetic diversity should now be a high priority in the interests of the health of purebred dogs. Possible remedial action includes limits on the use of popular sires, encouragement of matings across national and continental boundaries, and even the relaxation of breed rules to permit controlled outcrossing.

In addition to dog breeds, extensive pedigree records that can inform gene mapping studies are available for a number of economically important species, such as cattle. Several human populations – many of them the focus of interest for gene mapping efforts – have detailed pedigree information available, ranging from isolated religious groups, such as the Amish (Hurd, 1983; Agarwala et al., 1998) and Hutterites (Chapman et al., 2001), to 2.2M living and deceased residents of Utah, USA (Maul et al., 2006). Several European populations have extensive pedigrees recorded in the marriage certificates of parish churches, and have already been used for demographic studies (Boattini et al., 2006). Our population structure index Ψ could be useful in rapidly assessing population structure in advance of genotyping in such populations, as
well as to help select individuals for genotyping.

Acknowledgements

This work was funded by the UK Biotechnology and Biological Sciences Research Council under the Link Applied Genomics scheme. We thank Alun Thomas, Lisa Cannon-Albright, Aruna Bansal, Elizabeth Thompson, and Michael Stumpf for helpful discussions.

References

AGARWALA, R., L. BIESECKER, K. HOPKINS, C. FRANCOMANO, and A. SCHAFFER, 1998 Software for constructing and verifying pedigrees within large genealogies and an application to the old order Amish of Lancaster County. Genome Research 8: 211 – 221.

Comstock, K., F. Lingaas, E. Kirkness, C. Hitte, R. Thomas, *et al.*, 2004 A high-resolution comparative map of canine chromosome 5q14.3-q33 constructed utilizing the 1.5x canine genome sequence. Mammalian Genome **15**: 544 – 551.

Table 1: Breeds included in the study, with pedigree size and the numbers of sires, dams and founders. The breed group refers to the four groups identified by Parker et al. (2004).

<table>
<thead>
<tr>
<th>Breed</th>
<th>Breed group</th>
<th># Dogs</th>
<th># Sires (% of males)</th>
<th># Dams (% of females)</th>
<th># Founders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akita Inu</td>
<td>Oriental</td>
<td>21,155</td>
<td>1,329 (13%)</td>
<td>2,115 (20%)</td>
<td>223</td>
</tr>
<tr>
<td>Boxer</td>
<td>Mastiff</td>
<td>195,358</td>
<td>8,518 (9%)</td>
<td>24,601 (25%)</td>
<td>4,032</td>
</tr>
<tr>
<td>English Bulldog</td>
<td>Mastiff</td>
<td>46,420</td>
<td>2,175 (11%)</td>
<td>7,660 (36%)</td>
<td>882</td>
</tr>
<tr>
<td>Chow Chow</td>
<td>Oriental</td>
<td>18,386</td>
<td>928 (11%)</td>
<td>2,597 (27%)</td>
<td>1,012</td>
</tr>
<tr>
<td>Rough Collie</td>
<td>Shepherd</td>
<td>83,864</td>
<td>4,190 (11%)</td>
<td>13,232 (30%)</td>
<td>5,285</td>
</tr>
<tr>
<td>Golden Retriever</td>
<td>Hunting</td>
<td>317,527</td>
<td>7,752 (5%)</td>
<td>28,963 (18%)</td>
<td>6,932</td>
</tr>
<tr>
<td>Greyhound</td>
<td>Shepherd</td>
<td>1,060</td>
<td>103 (21%)</td>
<td>159 (28%)</td>
<td>81</td>
</tr>
<tr>
<td>German Shepherd Dog</td>
<td>Shepherd</td>
<td>474,078</td>
<td>21,629 (9%)</td>
<td>48,108 (20%)</td>
<td>15,843</td>
</tr>
<tr>
<td>Labrador Retriever</td>
<td>Hunting</td>
<td>703,566</td>
<td>26,830 (8%)</td>
<td>70,541 (20%)</td>
<td>15,064</td>
</tr>
<tr>
<td>English Springer Spaniel</td>
<td>Hunting</td>
<td>276,179</td>
<td>17,471 (13%)</td>
<td>34,252 (24%)</td>
<td>9,718</td>
</tr>
</tbody>
</table>

Table 2: Distribution of numbers of offspring per sire and per dam; numbers of popular sires (≥ 100 offspring) and popular dams (≥ 40 offspring), and % of all sires and dams that are “popular”.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Sire Offspring max (median)</th>
<th>Popular Sires # (%)</th>
<th>Dam Offspring max (median)</th>
<th>Popular Dams # (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akita Inu</td>
<td>306 (9)</td>
<td>16 (1%)</td>
<td>52 (8)</td>
<td>4 (0.0%)</td>
</tr>
<tr>
<td>Boxer</td>
<td>1101 (8)</td>
<td>372 (4%)</td>
<td>49 (6)</td>
<td>25 (0.0%)</td>
</tr>
<tr>
<td>English Bulldog</td>
<td>430 (9)</td>
<td>77 (4%)</td>
<td>36 (5)</td>
<td>0</td>
</tr>
<tr>
<td>Chow Chow</td>
<td>212 (8)</td>
<td>22 (2%)</td>
<td>35 (5)</td>
<td>0</td>
</tr>
<tr>
<td>Rough Collie</td>
<td>775 (7)</td>
<td>128 (3%)</td>
<td>39 (5)</td>
<td>0</td>
</tr>
<tr>
<td>Golden Retriever</td>
<td>1386 (10)</td>
<td>792 (10%)</td>
<td>59 (8)</td>
<td>328 (1%)</td>
</tr>
<tr>
<td>Greyhound</td>
<td>45 (7)</td>
<td>0</td>
<td>17 (5)</td>
<td>0</td>
</tr>
<tr>
<td>German Shepherd Dog</td>
<td>1479 (8)</td>
<td>851 (4%)</td>
<td>67 (7)</td>
<td>509 (1%)</td>
</tr>
<tr>
<td>Labrador Retriever</td>
<td>1911 (9)</td>
<td>1338 (5%)</td>
<td>72 (8)</td>
<td>639 (1%)</td>
</tr>
<tr>
<td>English Springer Spaniel</td>
<td>2538 (7)</td>
<td>271 (2%)</td>
<td>62 (6)</td>
<td>89 (0.3%)</td>
</tr>
</tbody>
</table>
Table 3: Columns 2 – 4 describe the pedigree-based inbreeding coefficient f of dogs in generations 6 and 7 ($5.5 \leq GN \leq 7.5$): number of dogs, mean f, and % of dogs with $f > 0.1$. Col. 5: maximum f over all dogs in breed. Col. 6: inbreeding effective population size of breed calculated from the average increase in f over generations 1 through 5. Col. 7: average kinship over all pairs of dogs in the final two generations represented in each breed. Col. 8: % of singleton founder alleles expected to survive until generation 6.

<table>
<thead>
<tr>
<th>Breed</th>
<th>N</th>
<th>$\text{mean } f$</th>
<th>$% > 0.1$</th>
<th>max f</th>
<th>N_e</th>
<th>mean kinship</th>
<th>$%$ survival 6 generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akita Inu</td>
<td>2864</td>
<td>0.038</td>
<td>9.0</td>
<td>0.32</td>
<td>45</td>
<td>0.023</td>
<td>30</td>
</tr>
<tr>
<td>Boxer</td>
<td>44521</td>
<td>0.048</td>
<td>16</td>
<td>0.50</td>
<td>45</td>
<td>0.017</td>
<td>11</td>
</tr>
<tr>
<td>English Bulldog</td>
<td>12396</td>
<td>0.057</td>
<td>18</td>
<td>0.41</td>
<td>48</td>
<td>0.038</td>
<td>17</td>
</tr>
<tr>
<td>Chow Chow</td>
<td>1747</td>
<td>0.051</td>
<td>19</td>
<td>0.38</td>
<td>50</td>
<td>0.028</td>
<td>6.2</td>
</tr>
<tr>
<td>Rough Collie</td>
<td>4650</td>
<td>0.073</td>
<td>29</td>
<td>0.38</td>
<td>33</td>
<td>0.020</td>
<td>2.9</td>
</tr>
<tr>
<td>Golden Retriever</td>
<td>31259</td>
<td>0.035</td>
<td>8.2</td>
<td>0.39</td>
<td>67</td>
<td>0.013</td>
<td>6.3</td>
</tr>
<tr>
<td>Greyhound</td>
<td>16</td>
<td>0.058</td>
<td>0</td>
<td>0.08</td>
<td>17</td>
<td>0.072</td>
<td>6.5</td>
</tr>
<tr>
<td>German Shepherd Dog</td>
<td>43488</td>
<td>0.033</td>
<td>12</td>
<td>0.47</td>
<td>76</td>
<td>0.014</td>
<td>5.6</td>
</tr>
<tr>
<td>Labrador Retriever</td>
<td>97884</td>
<td>0.024</td>
<td>5.2</td>
<td>0.39</td>
<td>114</td>
<td>0.012</td>
<td>9.2</td>
</tr>
<tr>
<td>English Springer Spaniel</td>
<td>23721</td>
<td>0.033</td>
<td>6.0</td>
<td>0.38</td>
<td>72</td>
<td>0.017</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Table 4: Pedigree Structure Index Ψ

<table>
<thead>
<tr>
<th>Breed</th>
<th>Sires (95% CI)</th>
<th>Dams (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akita Inu</td>
<td>0.10 (0.07 - 0.17)</td>
<td>0.13 (0.09 - 0.20)</td>
</tr>
<tr>
<td>Boxer</td>
<td>0.36 (0.33 - 0.40)</td>
<td>0.40 (0.38 - 0.43)</td>
</tr>
<tr>
<td>English Bulldog</td>
<td>0.15 (0.12 - 0.19)</td>
<td>0.14 (0.12 - 0.17)</td>
</tr>
<tr>
<td>Chow Chow</td>
<td>0.43 (0.36 - 0.50)</td>
<td>0.45 (0.39 - 0.53)</td>
</tr>
<tr>
<td>Rough Collie</td>
<td>0.34 (0.29 - 0.40)</td>
<td>0.38 (0.34 - 0.42)</td>
</tr>
<tr>
<td>Golden Retriever</td>
<td>0.37 (0.33 - 0.40)</td>
<td>0.43 (0.41 - 0.46)</td>
</tr>
<tr>
<td>Greyhound</td>
<td>0.40 (0.20 - 0.65)</td>
<td>0.34 (0.17 - 0.57)</td>
</tr>
<tr>
<td>German Shepherd Dog</td>
<td>0.41 (0.37 - 0.43)</td>
<td>0.35 (0.33 - 0.38)</td>
</tr>
<tr>
<td>Labrador Retriever</td>
<td>0.22 (0.20 - 0.24)</td>
<td>0.33 (0.31 - 0.35)</td>
</tr>
<tr>
<td>English Springer Spaniel</td>
<td>0.55 (0.51 - 0.58)</td>
<td>0.28 (0.26 - 0.30)</td>
</tr>
</tbody>
</table>

Table 5: Distribution of Ψ for 1000 randomised datasets:

<table>
<thead>
<tr>
<th>Breed</th>
<th>2.5 %ile</th>
<th>median</th>
<th>97.5 %ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greyhound</td>
<td>0.007</td>
<td>0.037</td>
<td>0.078</td>
</tr>
<tr>
<td>Labrador Retriever</td>
<td>0.008</td>
<td>0.010</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Figure 1: Inbreeding coefficients averaged over dogs with the same GN value, rounded to the nearest integer. The vertical bars represent ±1 standard error of the mean.

Figure 2: Pedigrees of two highly-inbred Boxer dogs (represented by the diamond shape), each with $f = 0.5$. Squares represent sires and circles represent dams.
Figure 3: Dogs in the final two generations for (top) Springer Spaniel, (centre) Chow Chow and (bottom) Golden Retriever, are plotted according to (left) the first two principal components based on their ancestors in the founding generation; and (right) multidimensional scaling based on pairwise kinship coefficients. The red and blue circles indicate the two clusters identified using 2-means clustering based on founder ancestry.